Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37697435

RESUMO

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Instabilidade Genômica , Recidiva Local de Neoplasia , Estruturas R-Loop , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529165

RESUMO

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , DNA de Neoplasias/metabolismo , Instabilidade Genômica , Neoplasias Mamárias Animais/metabolismo , Neoplasias Ovarianas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , DNA de Neoplasias/genética , Feminino , Loci Gênicos , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Knockout , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases/genética
4.
J Clin Invest ; 128(10): 4525-4542, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222135

RESUMO

The E3 ubiquitin ligase RNF8 plays critical roles in maintaining genomic stability by promoting the repair of DNA double-strand breaks (DSBs) through ubiquitin signaling. Abnormal activation of Notch signaling and defective repair of DSBs promote breast cancer risk. Here, we found that low expression of the full-length RNF8 correlated with poor prognosis for breast cancer patients. Our data revealed that in addition to its role in the repair of DSBs, RNF8 regulated Notch1 signaling and cell-fate determination of mammary luminal progenitors. Mechanistically, RNF8 acted as a negative regulator of Notch signaling by ubiquitylating the active NOTCH1 protein (N1ICD), leading to its degradation. Consistent with abnormal activation of Notch signaling and impaired repair of DSBs in Rnf8-mutant mammary epithelial cells, we observed increased risk of mammary tumorigenesis in mouse models for RNF8 deficiency. Notably, deficiency of RNF8 sensitized breast cancer cells to combination of pharmacological inhibitors of Notch signaling and poly(ADP-ribose) polymerase (PARP), suggesting implications for treatment of breast cancer associated with impaired RNF8 expression or function.


Assuntos
Carcinogênese/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/biossíntese , Animais , Carcinogênese/genética , Carcinogênese/patologia , Quebras de DNA de Cadeia Dupla , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Receptor Notch1/genética , Ubiquitina-Proteína Ligases/genética
5.
Nat Commun ; 7: 12638, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558965

RESUMO

Topoisomerase IIα (TOP2α) is essential for chromosomal condensation and segregation, as well as genomic integrity. Here we report that RNF168, an E3 ligase mutated in the human RIDDLE syndrome, interacts with TOP2α and mediates its ubiquitylation. RNF168 deficiency impairs decatenation activity of TOP2α and promotes mitotic abnormalities and defective chromosomal segregation. Our data also indicate that RNF168 deficiency, including in human breast cancer cell lines, confers resistance to the anti-cancer drug and TOP2 inhibitor etoposide. We also identify USP10 as a deubiquitylase that negatively regulates TOP2α ubiquitylation and restrains its chromatin association. These findings provide a mechanistic link between the RNF168/USP10 axis and TOP2α ubiquitylation and function, and suggest a role for RNF168 in the response to anti-cancer chemotherapeutics that target TOP2.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Anormalidades Craniofaciais/genética , DNA Catenado/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Fibroblastos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Síndromes de Imunodeficiência/genética , Deficiências da Aprendizagem/genética , Camundongos , Mutagênese Sítio-Dirigida , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Doenças da Imunodeficiência Primária , Proteômica , RNA Interferente Pequeno/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Breast Cancer Res ; 16(6): 496, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25499975

RESUMO

INTRODUCTION: Nuclear accumulation of ß-catenin is important for cancer development and it is found to overlap with p68 (DDX5) immunoreactivity in most breast cancers, as indicated by both clinical investigations and studies in cell lines. In this study, we aim to investigate the regulation of p68 gene expression through ß-catenin/transcription factor 4 (TCF4) signaling in breast cancer. METHODS: Formalin-fixed paraffin-embedded sections derived from normal human breast and breast cancer samples were used for immunohistochemical analysis. Protein and mRNA expressions were determined by immunoblotting and quantitative RT-PCR respectively. Promoter activity of p68 was checked using luciferase assay. Occupancy of several factors on the p68 promoter was evaluated using chromatin immunoprecipitation. Finally, a syngeneic mouse model of breast cancer was used to assess physiological significance. RESULTS: We demonstrated that ß-catenin can directly induce transcription of p68 promoter or indirectly through regulation of c-Myc in both human and mouse breast cancer cells. Moreover, by chromatin immunoprecipitation assay, we have found that both ß-catenin and TCF4 occupy the endogenous p68 promoter, which is further enhanced by Wnt signaling. Furthermore, we have also established a positive feedback regulation for the expression of TCF4 by p68. To the best of our knowledge, this is the first report on ß-catenin/TCF4-mediated p68 gene regulation, which plays an important role in epithelial to mesenchymal transition, as shown in vitro in breast cancer cell lines and in vivo in an animal breast tumour model. CONCLUSIONS: Our findings indicate that Wnt/ß-catenin signaling plays an important role in breast cancer progression through p68 upregulation.


Assuntos
Adenocarcinoma/genética , Neoplasias da Mama/genética , RNA Helicases DEAD-box/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Adenocarcinoma/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição 4 , Ativação Transcricional
7.
J Biol Chem ; 287(22): 18287-96, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493441

RESUMO

Wnt/ß-catenin and EGFR pathways are important in cancer development and often aberrantly activated in human cancer. However, it is very important to understand the mechanism responsible for this activation and the relation between them. Here, we report the mechanism of EGFR expression by transcriptionally active ß-catenin in GSK3ß-inactivated prostate cancer cells that eventually leads to its enhanced proliferation and survival. Expressions of ß-catenin and EGFR are elevated in various cancers specifically in prostate cancer cells, DU145. When GSK3ß is inactivated in these cells, ß-catenin gets stabilized, phosphorylated at Ser-552 by protein kinase A, accumulates in the nucleus, and regulates the expression of its target genes that include EGFR. Chromatin immunoprecipitation (ChIP) and promoter analysis revealed that the EGFR promoter gets occupied by transcriptionally active ß-catenin when elevated in GSK3ß-inactivated cells. This phenomenon not only leads to increased expression of EGFR but also initiates the activation of its downstream molecules such as ERK1/2 and Stat3, ultimately resulting in up-regulation of multiple genes involved in cell proliferation and survival.


Assuntos
Receptores ErbB/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Transcrição Gênica/fisiologia , beta Catenina/fisiologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Receptores ErbB/metabolismo , Humanos , Masculino , Microscopia de Fluorescência , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Receptor Cross-Talk , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...